Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors.

نویسندگان

  • Amanda M Haidet
  • Liza Rizo
  • Chalonda Handy
  • Priya Umapathi
  • Amy Eagle
  • Chris Shilling
  • Daniel Boue
  • Paul T Martin
  • Zarife Sahenk
  • Jerry R Mendell
  • Brian K Kaspar
چکیده

Increasing the size and strength of muscles represents a promising therapeutic strategy for musculoskeletal disorders, and interest has focused on myostatin, a negative regulator of muscle growth. Various myostatin inhibitor approaches have been identified and tested in models of muscle disease with varying efficacies, depending on the age at which myostatin inhibition occurs. Here, we describe a one-time gene administration of myostatin-inhibitor-proteins to enhance muscle mass and strength in normal and dystrophic mouse models for >2 years, even when delivered in aged animals. These results demonstrate a promising therapeutic strategy that warrants consideration for clinical trials in human muscle diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice

Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...

متن کامل

Inhibition of myostatin in adult mice increases skeletal muscle mass and strength.

A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may...

متن کامل

Myostatin (GDF-8) as a key factor linking muscle mass and bone structure.

Myostatin (GDF-8) is a member of the transforming growth factor-beta (TGF-beta) superfamily that is highly expressed in skeletal muscle, and myostatin loss-of-function leads to doubling of skeletal muscle mass. Myostatin-deficient mice have been used as a model for studying muscle-bone interactions, and here we review the skeletal phenotype associated with altered myostatin signaling. It is now...

متن کامل

Comparison of the Effects of Resistance Training with Blood Flow Restriction and Traditional Resistance Training on Myostatin, Muscle Mass and some Physiological Factors in Middle-Aged Women: A Clinical Trial

    Background and Objectives: The response of myostatin to resistance training with blood flow restriction is not perfectly clear. Therefore, the purpose of this study comparing the effects of eight weeks resistance training with blood flow restriction and traditional resistance training on myostatin, muscle mass and some related-muscle physiological factors in middle-aged women. Materials ...

متن کامل

Systemic Myostatin Inhibition via Liver-Targeted Gene Transfer in Normal and Dystrophic Mice

BACKGROUND Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies. METHODOLOGY/PRINCIPAL FINDINGS Here we describe a unique method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 11  شماره 

صفحات  -

تاریخ انتشار 2008